本文由vivo技术团队Yang Kun分享,原题electron 应用开发优秀实践,本文有修订。

1、引言

在上篇《Electron初体验(快速开始、跨进程通信、打包、踩坑等)》的分享中,我们已经对Electron跨端框架的开发有了大概的了解。

本篇将基于vivo技术团队的技术实践,详细阐述了vivo在使用Electron进行跨端桌面开发时的技术栈选型考量,同时分享了在打包构建、版本更新、性能优化、质量保障、安全性等方面的实践方案和踩坑总结。

打开网易新闻 查看精彩图片

2、系列文章

本文是系列文章中的第3篇,本系列总目录如下:

《IM跨平台技术学习(一):快速了解新一代跨平台桌面技术——Electron》《IM跨平台技术学习(二):Electron初体验(快速开始、跨进程通信、打包、踩坑等)》《IM跨平台技术学习(三):vivo的Electron技术栈选型、全方位实践总结》(* 本文)《IM跨平台技术学习(四):蘑菇街基于Electron开发IM客户端的技术实践》(稍后发布.. )《IM跨平台技术学习(五):融云基于Electron的IM跨平台SDK改造实践总结》(稍后发布.. )《IM跨平台技术学习(六):网易云信基于Electron的IM消息全文检索技术实践》(稍后发布.. )3、技术背景

因业务发展,我们需要用到桌面端技术,技术特性涉及离线可用、调用桌面系统能力等要求。

那么什么是桌面端开发?一句话概括就是:以 Windows 、MacOS 和 Linux 为操作系统的桌面软件开发。

对此我们做了详细的技术调研:桌面端的开发方式主要有 Native 、 QT 、 Flutter 、 NW 、 Electron 、 Tarui 。

这些技术各自优劣势如下表格所示:

打开网易新闻 查看精彩图片

我们最终的桌面端技术选型是 Electron,Electron 是一个可以使用 Web 技术来开发跨平台桌面应用的开发框架。

其技术组成如下:

Electron = Chromium Node.js Native API

各技术能力如下图所示:

打开网易新闻 查看精彩图片

整体架构如下图所示:

打开网易新闻 查看精彩图片

Electron 是多进程架构,架构具有以下特点:

1)由一个主进程和 N 个渲染进程组成;2)主进程承担主导作用,用于完成各种跨平台和原生交互;3)渲染进程可以是多个,使用 Web 技术开发,通过浏览器内核渲染页面;4)主进程和渲染进程通过进程间通信来完成各种功能。

这里回顾一下 Electron 进程间通信技术原理。

electron 使用 ipc (interprocess communication) 在进程之间进行通信。

如下图所示:

打开网易新闻 查看精彩图片

其提供了 IPC 通信模块,主进程的ipcMain 和渲染进程的 ipcRenderer。

从 electron 源码中可以看出, ipcMain 和 ipcRenderer 都是 EventEmitter 对象。

源码如下图所示:

打开网易新闻 查看精彩图片

看到源码实现,是不是觉得 IPC 不难理解了。知其本质,方可游刃有余。

限于篇幅,这里对Electron的基础知识就不再展开,有兴趣的读者可回顾一下本系列的前两篇《快速了解新一代跨平台桌面技术——Electron》、《Electron初体验(快速开始、跨进程通信、打包、踩坑等)》(这篇中的5、进程详解特别介绍了Electron进程间的关系以及通信原理)。

4、开发技术栈选型 4.1编程语言选型

我们最终选择的是Typescript,理由如下。

针对开发者:

1)Javascript 的超集(无缝支持所有的 es2020 所有的特性,学习成本小);2)编译生成的 JavaScript 的代码保持很好的可读性;3)可维护性明显增强;4)完整的 OOP 的支持(extends, interface, private, protect, public等);5)类型即文档;6)类型的约束,更少的单元测试的覆盖;7)更安全的代码。

针对工具:

1)更好的重构能力;2)静态分析自动导包;3)代码错误检查;4)代码跳转;5)代码提示补齐。

社区支持:大量的社区的类型定义文件 提升开发效率。

4.2构建工具选型

我们选择的是 Electron-Forge。

理由很充分:Electron-Forge简单而又强大,目前 electron 应用最好的构建工具之一。

这里提一下 electron-builder 其和 electron-forge 的介绍和区别。

打开网易新闻 查看精彩图片

两者最大的区别在于自由度,两者在能力上基本没什么差异了,从官方组织中的排序看,有意优先推荐 electron-forge 。

4.3Web方案选型

我们采用的是 Vue3 ,同时使用 Vite 作为构建工具,具体优点,大家可以查看官网介绍,这套组合是目前主流的 Web 开发方案。

4.4monorepo方案选型

目前的 monorepo 生态百花齐放,正确的实践方法应该是集大成法,也就是取各家之长,目前的趋势也是如此,各开源 monorepo 工具达成默契,专注自己擅长的能力。

如 pnpm 擅长依赖管理, turbo 擅长构建任务编排。遂在 monorepo 技术选型上,我选择了 pnpm 和 turbo 。

以下是pnpm的官网:

打开网易新闻 查看精彩图片

pnpm 理由如下:

1)目前最好的包管理工具(pnpm 吸收了npm、yarn、lerna等主流工具的精华,并去其糟粕);2)生态、社区活跃且强大;3)结合 workspace 可以完成 monorepo 最佳设计和实践;4)在管理多项目的包依赖、代码风格、代码质量、组件库复用等场景下,表现出色;5)在框架、库的开发、调试、维护方面,表现出色。

相比于 vue 官网,在使用 pnpm 上,我加了 workspace 。

turbo 理由如下:

1)它是一个高性能构建系统(拥有增量构建、云缓存、并行执行、运行时零开销、任务管道、精简子集等特性);2)具有非常优秀的任务编排能力(可以弥补 pnpm 在任务编排上的短板)。4.5本地数据库选型

Electron 应用数据库有非常多的选择如 lowdb 、 sqlite3 、 electron-store 、 pouchdb 、 dedb 、 rxdb 、 dexie 、 ImmortalDB 等。

这些数据库都有一个特性,那就是无服务器。

Electron本地数据库技术选型考虑因素主要有:

1)生态(使用者数量、维护频率、版本稳定度);2)能力;3)性能;4)其他(和使用者技术匹配度)。

我们通过以下渠道进行了相关调研:

1)github 的 issues、commit、fork、star;2)sourcegraph 关键字搜索结果数;3)npm 包下载量、版本发布;4)官网和博客。

给出四个最优选择,分别是 lowdb 、 sqlite3 、 nedb 、 electron-store 。

我们的理由如下:

1)lowdb:生态、能力、性能三方面表现优秀, json 形式的存储结构, 支持 lodash 、 ramda 等 api 操作,利于备份和调用;2)sqlite3:生态、能力、性能三方面表现优秀, Nodejs 关系型数据库第一选择方案;3)nedb:能力、性能三方面表现优秀,缺点是基本不维护了,但底子还在,尤其操作是 MongoDB 的子集,对于熟悉 MongoDB 的使用者来说是绝佳选择;4)electron-store:生态表现优秀,轻量级持久化方案,简单易用。

我们使用的数据库最终选型是 lowdb 方案。

PS:提一下 pouchdb ,如果需要将本地数据同步到远端数据库,可以使用 pouchdb ,其和 couchdb 可以轻松完成同步。

4.6脚本工具选型

软件开发过程中,将一些流程和操作通过脚本来完成,可以有效地提高开发效率和幸福度。

依赖 node runtime 的优秀选择就两个:shelljs 和 zx 。

选择 zx 的理由如下:

1)自带 fetch 、 chalk 等常用库,使用方便快捷;2)多个子进程方便快捷(执行远端脚本、解析 md 、 xml 文件脚本、支持 ts),功能丰富且强大;3)谷歌出品、大厂背景,生态非常活跃。

至此,技术选型就介绍完了。

5、打包构建实践 5.1应用图标生成

不同尺寸图标的生成有以下方法。

Windows:

1)软件生成: icofx3;2)网页生成: https://tool.520101.com/diannao/ico/。

MacOS:

1)软件生成: icofx3;2)网页生成: https://tool.520101.com/diannao/ico/;3)命令行生成: 使用 sips 和 iconutil 生成。5.2二进制文件构建

本章节内容是基于 electron-forge 阐述的,不过原理是一样的。

在开发桌面端应用时,会有场景要用到第三方的二进制程序,比如 ffmpeg 这种。

在构建二进制程序时,要关注以下两个注意项。

1)二进制程序不能打包进 asar 中 可以在构建配置文件(forge.config.js)进行如下设置:

const os = require(os) const platform = os.platform() const config = { packagerConfig: { // 可以将 ffmpeg 目录打包到 asar 目录外面 extraResource: [`./src/main/ffmpeg/`] } }

2)开发和生产环境,获取二进制程序路径方法是不一样的 可以采用如下代码进行动态获取:

import { app } from electron import os from os import path from path const platform = os.platform() const dir = app.getAppPath() let basePath = if(app.isPackaged) basePath = path.join(process.resourcesPath) elsebasePath = path.join(dir, ffmpeg) const isWin = platform === win32 // ffmpeg 二进制程序路径 const ffmpegPath = path.join(basePath, `${platform}`, `ffmpeg${isWin ? .exe:5.3按需构建

如何对跨平台二进制文件进行按需构建呢?

比如桌面应用中用到了 ffmpeg , 它需要有 windows 、 mac 和 linux 的下载二进制。

在打包的时候,如果不做按需构建,则会将 3 个二进制文件全部打到构建中,这样会让应用体积增加很多。

可以在 forge.config.js 配置文件中进行如下配置,即可完成按需构建。

代码如下:

const platform = os.platform() const config = { packagerConfig: { extraResource: [`./src/main/ffmpeg/${platform}`] }, }

通过 platform 变量来把对应系统的二进制打到构建中,即可完成对二进制文件的按需构建。

5.4性能优化

主要是构建速度和构建体积优化,构建速度这块不好优化。这里重点说下构建体积优化,拿 mac 系统举例说明, 在 electron 应用打包后,查看应用包内容。

打开网易新闻 查看精彩图片

可以看到有一个 app.asar 文件。

打开网易新闻 查看精彩图片

这个文件用 asar 解压后可以看到有以下内容:

可以看出 asar 中的文件,就是我们构建后的项目代码,从图中可以看到有 node_modules 目录, 这是因为在 electron 构建机制中,会自动把 dependencies 的依赖全部打到 asar 中。

结合上述分析,我们的优化措施有以下4点:

1)将 web 端构建所需的依赖全部放到 devDependencies 中,只将在 electron 端需要的依赖放到 dependencies;2)将和生产无关的代码和文件从构建中剔除;3)对跨平台使用的二进制文件,如 ffmpeg 进行按需构建(上文按需构建已介绍);4)对 node_modules 进行清理精简。

这里提下第 4) 点,如何对 node_modules 进行清理精简呢?

如果是 yarn 安装的依赖:我们可以在根目录使用下面命令进行精简:

yarn autoclean -I yarn autoclean -F

如果是 pnpm 安装的依赖:第 4)点应该不起作用了。我在项目中使用 yarn 安装依赖,然后执行上述命令后,发现打包体积减少了 6M , 虽然不多,但也还可以。

6、版本更新实践 6.1全量更新

全量更新就是通过下载最新的包或者 zip 文件,进行软件更新,需要替换所有的文件。

整体设计流程图如下:

打开网易新闻 查看精彩图片

按照流程图去实现,我们需要做以下事情:

1)开发服务端接口,用来返回应用最新版本信息;2)渲染进程使用 axios 等工具请求接口,获取最新版本信息;3)封装更新逻辑,用来对接口返回的版本信息进行综合比较,判断是否更新;4)通过 ipc 通信将更新信息传递给主进程;5)主进程通过 electron-updater 进行全量更新;6)将更新信息通过 ipc 推送给渲染进程;7)渲染进程向用户展示更新信息,若更新成功,则弹出弹窗告诉用户重启应用,完成软件更新。6.2增量更新

增量更新是通过拉取最新的渲染层打包文件,覆盖之前的渲染层代码,完成软件更新,此方案只需替换渲染层代码,无需替换所有文件。

打开网易新闻 查看精彩图片

按照流程图去实现,我们需要做以下事情:

1)渲染进程定时通知主进程检测更新;2)主进程检测更新;3)需要更新,则拉取线上最新包;4)删除旧版本包,复制线上最新包,完成增量更新;5)通知渲染进程,提示用户重启应用完成更新。全量更新和增量更新各有优势,多数情况下,采用增量更新来提高用户更新体验,同时使用全量更新作为兜底更新方案。7、性能优化实践

打包构建优化在上节内容中已经详细介绍过了,这里不再介绍,下面将介绍我们对启动时优化和运行时优化的实践。

7.1启动时优化

主要从以下几个方面着手:

1)使用 V8-compile-cache 缓存编译代码;2)优先加载核心功能,非核心功能动态加载;3)使用多进程,多线程技术;4)采用 asar 打包:会加快启动速度;5)增加视觉过渡:loading 骨架屏。7.1.1)使用 v8-compile-cache 缓存编译代码:

使用 V8 缓存数据,为什么要这么做呢?

因为 electorn 使用 V8 引擎运行 js , V8 运行 js 时,需要先进行解析和编译,再执行代码。其中,解析和编译过程消耗时间多,经常导致性能瓶颈。而 V8 缓存功能,可以将编译后的字节码缓存起来,省去下一次解析、编译的时间。

主要使用 v8-compile-cache 来缓存编译的代码,做法很简单:在需要缓存的地方加一行。

1require(v8-compile-cache)

其他使用方法请查看此链接文档 :https://www.npmjs.com/package/v8-compile-cache

7.1.2)优先加载核心功能,非核心功能动态加载:

伪代码如下:

export functionshare() { const kun = require(kun) kun() }7.2运行时优化

主要从以下几个方面着手:

1)对渲染进程 进行 Web 性能优化;2)对主进程进行轻量瘦身。7.2.1)对渲染进程 进行 Web 性能优化:

用一个思维导图来完整阐述如何进行 Web 性能优化,如下图所示:

打开网易新闻 查看精彩图片

上图基本包含了性能优化的核心关键点和内容,大家可以以此作为参考,去做性能优化。

7.2.2)对主进程进行轻量瘦身:

核心方案就是将运行时耗时、计算量大的功能交给新开的 node 进程去执行处理。

伪代码如下:

const { fork } = require(child_process) let { app } = require(electron) functioncreateProcess(socketName) { process = fork(`xxxx/server.js`, [ –subprocess, app.getVersion(), socketName ]) } const initApp = async () =

1.本站所有资源来源于用户上传和网络,如有侵权请邮件联系站长!
2.分享目的仅供大家学习和交流,您必须在下载后24小时内删除!
3.不得使用于非法商业用途,不得违反国家法律。否则后果自负!
4.本站提供的源码、模板、插件等其他资源,都不包含技术服务请大家谅解!
5.如有链接无法下载或失效,请联系管理员处理!
6.本站资源售价只是赞助,收取费用仅维持本站的日常运营所需!